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In this paper we examine the role of thermal mass in buffering the interior temperature
of a naturally ventilated building from the diurnal fluctuations in the environment.
First, we show that the effective thermal mass which is in good thermal contact with
the air is limited by the diffusion distance into the thermal mass over one diurnal
temperature cycle. We also show that this effective thermal mass may be modelled
as an isothermal mass. Temperature fluctuations in the effective thermal mass are
attenuated and phase-shifted from those of the interior air, and therefore heat is
exchanged with the interior air. The evolution of the interior air temperature is then
controlled by the relative magnitudes of (i) the time for the heat exchange between
the effective thermal mass and the air; (ii) the time for the natural ventilation to
replace the air in the space with air from the environment; and (iii) the period of the
diurnal oscillations of the environment. Through analysis and numerical solution of
the governing equations, we characterize a number of different limiting cases. If the
ventilation rate is very small, then the thermal mass buffers the interior air temperature
from fluctuations in the environment, creating a near-isothermal interior. If the ven-
tilation rate increases, so that there are many air changes over the course of a day,
but if there is little heat exchange between the thermal mass and interior air, then the
interior air temperature locks on to the environment temperature. If there is rapid
thermal equilibration of the thermal mass and interior air, and a high ventilation
rate, then both the thermal mass and the interior air temperatures lock on to the
environment temperature. However, in many buildings, the more usual case is that
in which the time for thermal equilibration is comparable to the period of diurnal
fluctuations, and in which ventilation rates are moderate. In this case, the fluctuations
of the temperature of the thermal mass lag those of the interior air, which in turn lag
those of the environment. We consider the implications of these results for the use of
thermal mass in naturally ventilated buildings.

1. Introduction
A significant proportion of the world’s energy is used to maintain a comfortable

climate within buildings. International Energy Agency (2005) calculations suggest that
in 1973, while industry and transport accounted for 42% and 25% respectively of the
world’s energy use, the agriculture, commercial, public sector and residential sectors
contributed the remaining 33%. In the last three sectors listed, the maintenance
of comfortable conditions within buildings accounts for a significant fraction of
the energy use. From statistics for 2002 collected by the Department of Trade and
Industry (2005) in the UK, it can be shown that space heating, cooling and ventilation
in buildings in the service and domestic sectors accounted for 23% of the country’s



4 J. M. Holford and A. W. Woods

primary energy use (44% of the 17% of energy used in the service sector and 50%
of the 31% of energy used in the domestic sector: see tables 1.7, 3.8 and 5.6). Hence
heating and cooling, combined with the mechanical distribution of air, in order to
maintain a ventilated thermally comfortable interior, is energy-intensive.

An alternative low-energy solution is to use the diurnal variations in the
environmental temperature to exchange heat with the exposed structure of a building,
and, if possible, to drive this heat exchange with natural buoyancy-driven flow. If the
structure of the building is cooled at night, the cooled material may be used during the
day as a heat sink to regulate the interior heat loads, and hence the temperature, within
the building. Alternatively, in cooler weather, heat from any daytime solar gain can
be stored in the structure for release at night. Exposed building structure used in this
manner is termed thermal mass. While floor coverings and lightweight ceiling panels
can insulate the thermal mass from the interior, it is an established practice to leave
some thermal mass exposed. In the Building Research Establishment’s Low Energy
Office, built in 1981, thermal mass was exposed in the interior ceiling in order to
improve the thermal stability, as described in Crisp, Fisk & Salvidge (1984). Concrete
floor slabs can be well-finished and left exposed in parts of some buildings, such as
the Millennium Galleries in Sheffield, described in Long (2001). In larger buildings,
incoming air can be routed through a plenum or undercroft of exposed concrete, as
in the Lanchester Library, Coventry University, described in Cook, Lomas & Eppel
(1999). As well as providing a reservoir of heat, heat may be transmitted through
thermal mass adjacent to the environment, although modern building techniques
are designed to minimize this transfer by incorporating an insulating layer within
the structure. If there is no route for heat transmission to the environment, then the
thermal mass is termed an internal thermal mass. The successful design of a thermally
massive building requires accurate modelling of the heat balance in the interior.

The interior air temperature is affected by heating and ventilation. Occupied
buildings must be ventilated to maintain a healthy interior environment, with low
levels of carbon dioxide, dust and other pollutants. One method is by natural stack
ventilation, allowing the difference in hydrostatic (stack) pressure to drive an exchange
between the interior and the environment, as described by Linden, Lane-Serff &
Smeed (1990) and Gladstone & Woods (2001). Even when local wind provides an
alternative ventilation mechanism, the stack effect can still be important in thermally
massive buildings, as in the Sri Lankan courtyard building studied by Rajapaksha,
Nagai & Okumiya (2003). The steadiness of the stack pressure force over several
hours may contribute to the importance of this mode of ventilation. Over the course
of a diurnal cycle, the interior space may switch between being warmer than the
environment to being cooler than the environment, causing the ventilation flow to
change direction through the openings. The interior air can be heated by radiators,
solar gain, occupants, electrical equipment, air-handling units and convective exchange
with the building structure. (The last two sources may instead cool the interior air.)
For most heating sources, the heat flux can be estimated or measured directly.
However, for heat exchanged with the building structure, the heat flux depends on
the temperature difference between the air and the structure surface, and hence on
the temperature profile within the structure. A sketch of heat exchange driven by
convection and ventilation in a space with internal thermal mass is shown in figure 1.
The heat exchange in a building with external thermal mass is a more complex
problem, as the penetration depths of temperature variations from the two sides both
influence heat transfer, and may overlap. The model investigated here is a simpler
case for an initial study.
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Figure 1. A sketch of a simple ventilated space with a well-mixed interior and internal thermal
mass (shaded). Heat is transferred between the interior air and the thermal mass by convection,
shown as the single solid arrows, and between the interior air and the environment by the
ventilation flow, shown as the double solid arrows.

In general, the environment temperature varies approximately harmonically on the
diurnal cycle, with moderate day-to-day variations as the weather changes. Therefore
much work has focused on the response of a building to a harmonically varying
environment temperature. Theoretical calculation of the interior temperature of a
thermally massive building without ventilation, or with forced (constant flow rate)
ventilation, is possible in many simplified cases. A number of examples are given in
Pratt (1981). The large heat store provided by thermal mass attenuates the environ-
mental variation, and introduces a phase lag, owing to the time taken for heat to
diffuse into and out of the thermal mass. Both these features are useful in moderating
interior conditions, as the peak interior temperature can be delayed beyond the period
of use of the building.

Models of the heat balance in more realistic buildings are usually based on the
‘conduction transfer function’ (CTF) method or on the ‘response factor’ method.
In the CTF method, linear relationships connect the Fourier components of the
temperature and heat flux at the two surfaces of any thermal mass across which the
heat flow is one-dimensional: see, for example, Fisk (1981). Then an exact analogy can
be made between heat flow through a thermal mass and current flow through a trio
of impedances in an electric circuit. In the ‘RC method’ these complex impedances
are approximated, under limiting conditions, by a simpler network of resistances and
capacitances. Internal thermal mass can be approximately incorporated in the RC
method as a capacitance to ground, as in Lombard & Mathews (1999). Alternatively,
in the response factor method (Stephenson & Mitalas 1967; Mitalas 1968), the
temperature response of the structure to a heat pulse is summed to give the response
to any heating time series. Approximations are introduced when these methods are
applied to real buildings and, as a result, implementations give different results for test
simulations, especially of thermally massive buildings, as shown by Bansal & Bhandari
(1996).

At a single frequency, Li & Yam (2004) identified three parameters that control
the dynamics of a diffusive internal thermal mass affected by forced ventilation. They
showed that the phase lag of the interior temperature is at most π/2, and that the
convective heat transfer number (ratio of convective to ventilation heat flux), the time
constant (the time for ventilation to flush through an amount of air with the heat
capacity of the thermal mass) and the penetration depth of the varying signal all
affect the phase lag and attenuation. Major simplifications can be made if the thermal
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mass can be modelled as a ‘lumped mass’, that is, assumed to be at a uniform
temperature. Yam, Li & Zheng (2003) derived analytic expressions for the phase lag
and attenuation in this situation.

The theoretical calculations for forced ventilation rely on the linear dependence of
each heat flux on the temperature difference. Under natural ventilation, the flow rate
itself varies, causing the ventilation heat flux to vary nonlinearly with the difference
between the interior and environment temperature. Some numerical calculations for
natural ventilation of an internal lumped thermal mass are given by Yam, Li & Zheng
(2003), showing close-to-periodic variation of the interior temperature. Here, we build
on this work, with a fundamental investigation of the thermal balance in a naturally
ventilated space. We use a numerical solution for the full diffusion–convection–
ventilation equations, and an approximate lumped model which we motivate from
and compare with the full model. This establishes the range of parameters across
which a lumped model may be accurately applied to model temperature fluctuations
in a naturally ventilated building with internal thermal mass. We then explore the
model in a number of idealized scenarios.

The paper is arranged as follows. In § 2, a full model for the heat balance in the
interior of a naturally ventilated building with internal thermal mass is presented.
Some preliminary scalings are used to identify the controlling parameters of the
system, and several full numerical solutions illustrate the range of behaviour of
the interior air and thermal mass temperatures. In the remainder of the paper, a
simpler model, which is a generalized lumped mass model, is derived and compared
with the full numerical solutions, and used to interpret the results. First, in § 3, the
diffusion of heat into an internal thermal mass layer adjacent to air at a harmonically
varying temperature is considered. The exact theoretical solution is calculated, and
an equivalent lumped mass model is derived. Then, in § 4, the results of the analysis
in § 3 are used to motivate a generalized lumped mass model which describes the
thermal evolution of a naturally ventilated space subject to harmonic forcing of
the environment temperature. The generalized lumped mass model predictions are
compared with the numerical solutions of the full diffusive thermal mass model from
§ 2, for the case of a naturally ventilated building. The generalized lumped mass
model is then studied in detail, and approximate solutions are derived in order to
provide insight into the relative importance of heat transfer to the thermal mass and
by ventilation in various parameter ranges. Conclusions are drawn in § 5.

2. Model of a naturally ventilated space with internal thermal mass
In this section a model to describe the response of a naturally ventilated space

with internal thermal mass to harmonic variations in the environment temperature is
presented and analysed. In order to derive insight into the principles of heat exchange
in this building design, we focus on the situation in which internal heat loads are small
and may be neglected. The interior air temperature is then determined by the balance
between heat exchange with the thermal mass, and heat exchange with the environ-
ment through natural ventilation. Thermally massive buildings offer great potential
for energy savings when the environment temperature is close to or above the human
comfort temperature, but has wide diurnal variations, when internal heat loads can
be small. In the alternative limit of large internal heat gains, the situation is simpler,
as the high heat gains will drive a large ventilation flow. While the mean interior air
temperature will be increased, the rapid flushing of the interior space will cause the
variation in interior air temperature to follow the environment temperature variation
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closely. A follow-up study will consider the response of a naturally ventilated space
with internal thermal mass to a constant internal heat load of intermediate strength.

Modern building structures are complex, layered structures, in which each layer has
different thermal properties, and layers are separated by interfaces or connections that
may themselves introduce barriers to heat flow. However an internal thermal mass
will typically be a layer of a single material, with known thermal properties. Heat is
transferred away from the thermal mass into air by diffusion and convection. The heat
flux can be measured by a heat transfer coefficient h, that is, the heat flux transferred
per unit area, per degree difference in temperature �T between the thermal mass
surface and the air far from the surface. The heat flux depends on (i) �T , (ii) whether
a constant surface temperature or constant heat flux is maintained, (iii) the orientation
of the surface and (iv) the air properties. A summary of many studies quantifying the
heat flux is given in Gebhart et al. (1988), and is used in the following analysis.

Above a warm floor or below a cool ceiling, the heat transfer coefficient is a
constant for small temperature differences, but increases as �T 1/3 as turbulent
convection develops. At the walls, a wall boundary layer flow develops, and the heat
flux is introduced into the bulk of the interior air when the boundary layer flow fills
the space from the floor or ceiling, as in the classic filling box model of Baines &
Turner (1969). The transition to turbulence may occur part-way up a wall, leading
to a temperature dependence of h in the range �T 1/4 to �T 1/3. Below a warm
ceiling or above a cold floor, the heat transfer coefficient will depend sensitively on
any mechanism that strips away the developing thermal boundary layer. Hence the
heat transfer coefficient h increases with temperature difference, markedly so for
horizontal surfaces, and has a different numerical value depending on the orientation
of the surface. The aim of the present study is to consider a highly idealized problem,
and quantify the accuracy of a simplified model of thermal mass under the nonlinear
effects of natural ventilation. Therefore, within this model, it is assumed that the heat
transfer coefficient takes a constant representative value.

Many components in a building, both of different structural elements and of items
such as furniture within, can contribute to the exposed thermal mass of the space.
Here, all internal thermal mass is assumed to be evenly distributed around the walls,
floor and ceiling, in a simplified model chosen to allow development of theoretical
understanding. It is expected that this model will be most applicable to the situation
where there is one dominant element of thermal mass, as is often the case in buildings
which have been designed to be heavyweight. Further work would be needed to
understand the interaction of different elements of internal thermal mass. While
temperature gradients in the interior air can occur, due to the spatial distribution of
ventilation openings and heat sources, it is assumed here that the space remains well
mixed. Radiative transfers within a space can be significant, and act to bring all surface
temperatures into equilibrium. For evenly distributed thermal mass surrounding a
well-mixed space, the thermal mass surface is a priori isothermal and radiation can be
neglected. The effects of corners will also be neglected, so that the diffusion of heat into
the thermal mass depends only on x, the distance from the back of the thermal mass.

The thermal mass can then be modelled by a layer of material with thermal
diffusivity κ , density ρ and specific heat capacity c, occupying 0 <x < l, in contact
with the interior air at temperature Ti at x = l, and insulated at x = 0, as sketched in
figure 2. The temperature within the layer T (x, t) then evolves with time t as

∂T

∂t
= κ

∂2T

∂x2
, (2.1)
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x = 0 x = l

Interior airEnvironment Thermal mass

T (x,t)

Ti (t)

Te (t)

Insulation

Figure 2. A sketch of the one-dimensional representation of an internal thermal mass adjacent
to a well-mixed interior, showing typical instantaneous environment, thermal mass and interior
air temperatures.

subject to the boundary conditions

∂T

∂x

∣∣∣∣
x=0

= 0, κρc
∂T

∂x

∣∣∣∣
x=l

= h[Ti − T |x=l]. (2.2)

A harmonic variation in the environment temperature Te, of the form

Te(t) = T0 + �T cos(ωt) = T0 + Re[�T eiωt ], (2.3)

is imposed. If ventilation occurs through openings separated by a height H with a
combined effective area of A∗, the ventilation flow rate q is given by

q = A∗
√

αgH |Te − Ti |, (2.4)

where α is the coefficient of thermal expansion and g is the acceleration due to
gravity. Then the interior temperature evolves as

ρiVici

dTi

dt
= Sh(T |x=l − Ti) + ρiciA

∗(Te − Ti)|αgH (Te − Ti)|1/2, (2.5)

where Vi , ρi and ci are the volume, density and specific heat capacity of the air within
the interior space and S is the surface area of the thermal mass exposed to the interior
air.

It is convenient to work with dimensionless variables. The forcing is provided
by the environment temperature variation, suggesting t1 = 1/ω as the reference time
scale and �T as the reference temperature scale. We define the dimensionless time,
temperature and position within the thermal mass to be τ = ωt , θ = (T − T0)/�T and
X = x/l, respectively. Then, from (2.1)–(2.3) and (2.5), the dimensionless environment
temperature is θe(τ ) = eiτ and the dimensionless temperature within the thermal mass
θ(X, τ ) evolves as

∂θ

∂τ
=

1

2η2

∂2θ

∂X2
, (2.6)

where η = l
√

ω/2κ , subject to the boundary conditions

∂θ

∂X

∣∣∣∣
X=0

= 0,
∂θ

∂X

∣∣∣∣
X=1

=
2η2

ξ
(θi − θ |X=1), (2.7)
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Value for construction type

Time scale Time scale for Expression light moderate heavy

t1 forcing
1

ω
3.8 hr 3.8 hr 3.8 hr

t2 convection to affect
lρc

h
1.5 hr 6.7 hr 26 hr

mass temperature

t3 diffusion to affect
l2

κ
0.23 hr 8.8 hr 3.9 hr

mass temperature

t4 ventilation to affect
Vi

q0

0.13 hr 0.13 hr 0.13 hr

interior temperature

t5 convection to affect
ρiciVi

hS
0.17 hr 0.17 hr 0.17 hr

interior temperature

Table 1. Time scales for various heat transfer processes in a building, with values for three
construction types. Note the ventilation rate scale q0 = A∗√

αgH�T .

where ξ =ωρcl/h. Finally, the dimensionless interior temperature evolves as

ε
dθi

dτ
=

1

ξ
(θ |X=1 − θi) + εRn(θe − θi)|θe − θi |1/2, (2.8)

where Rn =A∗√
αgH�T /Viω and ε =Viρici/Slρc. Integrating (2.6) over the thickness

of the thermal mass, using boundary conditions (2.7), gives

dθmean

dτ
=

1

ξ
(θi − θ |X=1), (2.9)

in terms of the mean thermal mass temperature θmean =
∫ 1

0
θ |X dX.

The four non-dimensional parameters η, ξ , Rn and ε that appear during the non-
dimensionalization can be interpreted in terms of the time scales for temperature
changes caused by various processes in the space, shown in table 1. The two processes
that control the heat transfer from the thermal mass are convection at the surface (on a
time scale t2 = lρc/h) and diffusion within the thermal mass (on a time scale t3 = l2/κ).
The ratio 2η2 = l2ω/κ = t3/t1 of the time scale for diffusion to the forcing time scale,
appearing in (2.6), indicates whether there is time for temperature variations to
penetrate the thermal mass before the environment temperature changes appreciably.
The parameter η represents the ratio of the layer thickness l to the penetration
depth δ =

√
2κ/ω of temperature variations into the thermal mass. Hence there is

an effective thermal mass, of thickness min(δ, l), which represents that part of the
thermal mass whose temperature varies over the period of diurnal fluctuations.
The ratio ξ = ωρcl/h = t2/t1 of the time scale for convection to the forcing time scale,
appearing in (2.7), indicates whether there is time for significant heat to be transferred
to the thermal mass before the environment temperature changes appreciably. For
η > 1, we expect ξ/η to represent the degree of thermal equilibration between the
interior air and the effective thermal mass.†

† In related work on steady heat transfer, the Biot number L = 2η2/ξ = t3/t2 is often used to
indicate whether convection at the surface of the thermal mass (L � 1) or diffusion within the
thermal mass (L � 1) limits heat transfer. The values in table 1 suggest that convection is commonly
the limiting process.
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The parameters ξ and η control the heat exchange with the thermal mass,
independently of the degree or type of ventilation. In order to estimate the time
scale for heat transfer by ventilation, a scale for the interior/environment temperature
difference is needed. Choosing the amplitude of environmental temperature variations
�T , the typical ventilation rate is q0 =A∗√

αgH�T , giving the time for ventilation
to affect the interior temperature as t4 = Vi/q0. This time scale is the analogue of the
flushing time scale defined by Holford & Hunt (2000) (for a well-mixed space, with
the temperature difference scale set by the initial conditions) or Kaye & Hunt (2004)
(for a two-layer stratification, with the temperature difference scale set by plume
dynamics). In both these earlier studies, the competition between a flushing time scale
and a heating (Holford & Hunt 2000) or filling (Kaye & Hunt 2004) time scale was
used to understand the dynamics of natural ventilation in an insulated space. In the
current work, there is no simple heating time scale because of the complexity of heat
transfer from the thermal mass. Our third non-dimensional parameter is the ratio of
the forcing time scale to the time to flush the interior space, Rn = q0/Viω = t1/t4.

Convection affects the temperatures of the thermal mass and interior air on time
scales of t2 and t5, respectively. The fourth parameter ε = Viρici/Slρc = t5/t2 is the
ratio of the heat capacity of the interior air to the heat capacity of the thermal mass.
In studies of forced ventilation, the dimensional time constant tc = ρclS/ρiciqf is a
commonly used parameter. It is the time for ventilation at a volume flow rate qf

between spaces at a temperature difference �T to bring in an amount of heat equal
to that that would be stored in the thermal mass by raising its temperature by �T .
Based on the typical ventilation rate q0, tc = t2t4/t5 = t1/εRn.

In order to calculate the range of appropriate values of the time scales and
parameters in this model, three typical construction materials (light, moderate and
heavy) from the guide by the Chartered Institution of Building Services Engineers,
CIBSE (1999), will be considered. Values for the time scales t1 to t5 are given
in table 1. For simplicity the dominant contribution is assumed to come from the
walls, as would be the case with a carpet floor finish, and a false ceiling. We shall
assume perfect insulation and consider the internal thermal mass of the inner leaf
of construction, neglecting the contribution of surface plaster finishes. The standard
constant convective heat transfer coefficient for walls from table 3.8 from CIBSE
(1999) is h = 2.5 Wm−2 K−1. Values will be calculated for a generic single space with
square floor area, of height H = 2.5 m, volume Vi = 60 m3 and thermal mass surface
area S =49 m2, with a total effective ventilation opening area of A∗ = 0.2 m2, and
for an amplitude of environmental temperature variations of �T = 5K. The typical
ventilation rate is then q0 = 0.13 m3 s−1, showing that the space can be flushed many
times over the diurnal cycle (Rn = 30).

In lightweight buildings with timber frame walls a common interior surface is
13 mm plasterboard (CIBSE 1999, table 3.54, 10). This thin, lightweight material
behaves as a lumped mass (η =0.03) and is rapidly affected by diurnal temperature
variations (ξ =0.40), while having a thermal capacity of only ten times the interior air
(ε =0.10). A more substantial alternative is a cavity wall construction, with 100 mm
lightweight aggregate concrete blocks as the inner leaf (CIBSE 1999, table 3.54,
8). This thicker material no longer behaves as a lumped thermal mass (η =1.07)
and is slow to respond to diurnal changes (ξ =1.8), with a thermal capacity many
times that of the interior air (ε =0.025). If instead the inner leaf of the cavity is
constructed from 100 mm dense concrete blocks (CIBSE 1999, table 3.54, 7), then
temperature variations penetrate the blocks more fully (η = 0.72), due to the higher
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Figure 3. Time series of the temperature in the environment θe (solid), interior θi (dotted),
thermal mass surface θ |X=1 (dot-dashed) and thermal mass mean θmean (dashed), from numerical
integration of the full diffusion model with η =1, ξ = 1 and Fn = 2.

thermal diffusivity. However, the greater thermal capacity of the blocks causes the
temperature of the mass to change much more slowly (ξ =6.7), and increases the
thermal capacity relative to that of the air many fold (ε = 0.0065).

In all but very lightweight buildings, many volumes of interior air must be flushed
through the space before an amount of heat comparable to that in the thermal mass
is brought in, because ε � 1. Therefore, on all but the shortest time scales, the heat
capacity of the air can be neglected, and the interior temperature assumed to adjust
instantaneously to balance the fluxes of heat into the interior. The strength of the
ventilation may now be expressed as the ratio of ventilation to convective heat fluxes,

Fn = ρiciq0/Sh = εξRn = t5/t4, (2.10)

which is O(1) in all three examples above. In the limit of small ε, (2.8) becomes

0 = θ |X=1 − θi + Fn(θe − θi)|θe − θi |1/2. (2.11)

A numerical integration of (2.6), (2.7) and (2.11), using the Crank–Nicholson
method (see Press et al. 1989) is used to solve an initial value problem, continuing
until the long-time solution is reached. Typical time series over several days are shown
in figure 3, for the environment, interior air, thermal mass surface and mean thermal
mass temperatures. The thermal mass and interior air temperatures approximate
a harmonic variation, and can usefully be characterized by their phase lag and
attenuation, with respect to the environment temperature. Here the phase lag is
defined as the mean time delay of temperature variation extrema from the environment
temperature extrema, and the attenuation is defined as the ratio of the peak-to-peak
temperature variation in the environment to that of the variable. As expected, the
environment variations are substantially attenuated in the mean temperature of the
thermal mass, and have a significant phase lag. However, the attenuation and phase
lag of the surface temperature of the thermal mass are not so marked. The interior
temperature always lies between that of the environment and that of the thermal mass
surface. There is no heat flux into the thermal mass at the time when the interior
air and surface temperatures are equal (and equal to the environment, by (2.11)).
Therefore the mean thermal mass temperature reaches its extrema at this time, from
(2.9).
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Fn

max(1, η)/ξ

∆θb >> ∆θe >> ∆θm

1

1

∆θb >> ∆θm >> ∆θe

∆θm >> ∆θb >> ∆θe

∆θm >> ∆θe >> ∆θb

∆θe >> ∆θm >> ∆θb

∆θe >> ∆θb >> ∆θm

Figure 4. Range of behaviour for Fn � 1 or Fn � 1 and max(1, η)/ξ � 1 or max(1, η)/ξ � 1,
from the scaling derived in the limits η � 1 and η � 1.

The influence of the parameters η, ξ and Fn can be estimated from a scaling
analysis. Suppose that typical temperature scales are θ |X=1 ∼ �θm, θi − θ |X=1 ∼ �θb

and θi −θe ∼ �θe. Then in the limit η � 1, the temperature gradient within the thermal
mass is concentrated in a surface layer of thickness 1/η, while away from the surface
layer the temperature variation is zero. The surface boundary condition (2.7) and the
interior heat balance (2.11) imply that

�θm ∼ η

ξ
�θb, �θb ∼ Fn�θ3/2

e . (2.12)

Alternatively, in the limit η � 1, the thermal mass is approximately isothermal, at
temperature θmean, and (2.6) may be replaced with

dθmean

dτ
≈ 1

ξ
(θi − θmean), (2.13)

which, with (2.11), gives

�θm ∼ 1

ξ
�θb, �θb ∼ Fn�θ3/2

e . (2.14)

Hence max(1, η)/ξ and Fn are the controlling parameters for η � 1 and η � 1. When
these two parameters are either large or small with respect to one, six possible
orderings of the magnitude of the three temperature scales are possible, in the regions
delineated in figure 4.

The attenuation of the mean thermal mass and interior air temperatures, denoted
by Amean and Ai respectively, can be estimated from

Amean ∼ max(1, η)

�θm

, Ai ∼ 1

1 − �θe

. (2.15)

Neglecting any phase shift in temperature, the three temperature scales must approx-
imately sum to one. Hence there are three distinctive limiting regimes, shown by the
hatching in figure 4.

Regime I: Fn � min(1, ξ, ξ/η) (vertical hatching), when the largest temperature
jump is between the interior air and the environment, with �θe ∼ 1 and �θm ∼
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Figure 5. Variation across ηξ parameter space of time series of the temperature in the
environment θe (solid), interior θi (dotted), thermal mass surface θ |X=1 (dot-dashed) and
thermal mass mean θmean (dashed), from numerical integration of the full diffusion model with
Fn = 1. The parameters (η, ξ ) are (i) (0.5, 4.0), (ii) (4.0, 4.0), (iii) (0.2, 0.5), (iv) (4.0, 1.0) and (v)
(1.0, 0.2).

max(1, η)Fn/ξ . The heat flux from ventilation is sufficiently small compared to that
from the thermal mass that little temperature variation penetrates the building, and
the attenuation of variations in the thermal mass and in the interior air are large, with
Amean ∼ ξ/Fn and Ai ∼ ∞. Provided that ε is small enough to give adequate ventilation
for air quality at this small Fn, this is the ideal regime for attenuating environmental
variations.

Regime II: ξ � min(1, Fn) max(1, η) (horizontal hatching), when the largest
temperature jump is within the thermal mass, with �θe ∼ [ξ min(1, 1/η)/Fn]

2/3 and
�θm ∼ 1. There is significant opportunity for ventilation, combined with strong
convection, so that both the interior air and thermal mass temperatures follow
the environment closely, with Amean ∼ max(1, η) and Ai ∼ 1. In this regime, there is no
benefit from the thermal mass, as it cannot be maintained at a temperature different
from the environment.

Regime III: Fn � 1 and ξ � max(1, η) (diagonal hatching), when the largest
temperature jump is across the boundary layer adjacent to the thermal mass, with
�θe ∼ 1/F 2/3

n and �θm ∼ max(1, η)/ξ . Once again there is significant opportunity
for ventilation, but now combined with weak convection. The interior air and
thermal mass temperatures diverge, with a large attenuation in the thermal mass
of Amean ∼ ξ , but little attenuation in the interior air of Ai ∼ 1 + F −2/3

n . In this
regime, interior conditions may benefit from an equable radiant temperature from the
surface of the thermal mass, although the air temperature is little different from the
environment.

A typical cross-section of behaviour as the thermal mass parameters η and ξ vary is
shown for the parameter choice Fn = 1, in the time series clips in figure 5. The interior
air and thermal mass surface temperatures converge as the parameter combination
max(1, η)/ξ increases, from case (i) to case (v). In addition, for a convection time scale
much longer than the forcing time scale (ξ � 1), the temperature changes within the
thermal mass are small, as little heat can be fluxed in or out. For a thin thermal mass
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layer (η � 1), the thermal mass temperature is uniform, as diffusion removes spatial
variations more quickly than the forcing time scale. For a thicker layer (η � 1),
temperature fluctuations are concentrated at the surface. In the remainder of this
work, we develop a model which can be used to predict the phase lag and attenuation
of temperature variations in the interior air and thermal mass.

3. The use of lumped models for internal thermal mass
It is desirable to investigate the dependence of the heat transfer between the interior

air and the thermal mass on the parameters η and ξ . In particular, it is useful to
know when the effects of thermal mass can be modelled by a lumped mass, that
is, a mass at uniform temperature. In the previous section, approximately harmonic
variations in the building temperatures were found from numerical solution of the full
diffusion equations in the thermal mass, coupled with natural ventilation. Therefore,
as a starting point for the analysis, we investigate the response of a thermal mass
to a harmonically varying interior temperature θi(τ ) = θ ie

iτ . If ventilation is forced
at a constant flow rate, then a harmonic variation in the environment results in a
harmonic variation in the interior.

As heat diffuses into the thermal mass, the temperature within the thermal mass
takes the simple form θ(X, τ ) = θ (X)eiτ = θ ie

i(τ−φ(X))/A(X), where the phase lag φ and
attenuation A are real. From (2.6) and (2.7), the complex amplitude θ (X) is given by

θ(X) = 2Cθi cos ηX cosh ηX(1 + i tan ηX tanh ηX), (3.1)

where

C =
η

cos η cosh η[2η + ξ (tanh η − tan η) + i{2η tan η tanh η + ξ (tanh η + tan η)}] .
(3.2)

Hence the amplitude of the temperature variation at the exposed surface is

θ (1) = 2Cθi cos η cosh η(1 + i tan η tanh η) =
θ ie

−iφ(1)

A(1)
, (3.3)

and the mean thermal mass temperature is

θmean =
Cθi

η
cos η cosh η[tanh η + tan η + i(tan η − tanh η)] =

θ ie
−iφmean

Amean

. (3.4)

Figure 6 shows typical profiles of the temperature within the thermal mass over one
forcing period. The temperature varies within an envelope θ i/A(X) which decreases
from the surface to the insulated boundary, while the phase lag φ(X) from the interior
air temperature increases with distance from the surface. The relative attenuation and
phase lag of temperature within the thermal mass vary with η, but do not depend on
ξ . As ξ increases, and the effect of convection decreases, the attenuation and phase
lag at the surface increase. For a thin layer of thermal mass (η � 1), the temperature
of the thermal mass is close to uniform, as the penetration depth is larger than the
layer thickness, while the surface temperature lags the environment temperature by

tan−1(ξ ) and is attenuated by a factor
√

1 + ξ 2.
A generalized lumped mass model is now derived, for this case of a harmonic

interior air temperature variation. Equation (2.9) reveals that changes in the mean
thermal mass temperature are due to temperature differences between the thermal
mass surface and the interior air. In this lumped model we relate the thermal mass
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Figure 6. Eight temperature profiles (dark → light) in one period, at times τ = 0, π/4, . . . ,
7π/4, across a thermal mass layer for which η = 2, ξ =1, adjacent to interior air at temperature
θi(τ ) = cos(τ ).

surface temperature to the mean thermal mass temperature, which has a larger
attenuation and phase lag. Writing

dθmean

dτ
=

1

ξ
(θi − θ |X=1) =

λ

ξ

(
θi − θmean

lr

)
, (3.5)

and requiring λ to be independent of time, lr is chosen to be

lr =
1

1 − tan φmean

tan φ(1)

[
1 − A(1)

cos φ(1)

] =
(cosh 2η − cos 2η)

η(sinh 2η + sin 2η)
, (3.6)

and λ then takes the value

λ = 1 − cosφ(1)

A(1)

[
1 − tan φ(1)

tan φmean

]
=

1

1 +
η(sinh 2η − sin 2η)

ξ (cosh 2η − cos 2η)

. (3.7)

A bulk thermal mass temperature θm = θmean/lr can then be defined, which satisfies

dθm

dτ
=

1

ΩL

(θi − θm), (3.8)

where

ΩL =
ξ lr

λ
. (3.9)

The parameter ΩL controls the heat exchange between the interior air and the
thermal mass. For ΩL � 1, the effective thermal mass is in good thermal contact
with the interior air and the bulk thermal mass temperature is similar to that of the
interior air. For ΩL � 1, the effective thermal mass is in poor thermal contact with
the interior air and the variation of the bulk thermal mass temperature is small. The
inverse 1/ΩL may be interpreted as the degree of thermal equilibration between the
effective thermal mass and the interior air, over the time scale of fluctuations in the
temperature of the interior air.

The generalized lumped mass model can also be derived by physical reasoning,
as follows. From consideration of the meaning of the parameter η, we assume that
only some fraction lr of the thermal mass layer responds to the temperature changes,
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Figure 7. Electric circuits supporting a current analogous to periodic heat flow through a
thermal mass, as in the CTF method. (a) Thermal mass connected to environment ‘voltage’ Ve

and interior ‘voltage’ Vi is equivalent to a network of three complex impedances, Z0, Z1 and
Z2. (b) For an internal thermal mass, Z0 → ∞, Z1 = 0 and Z2 = Z from (3.14).

and is at a uniform temperature θm. Also, we assume that the convective heat flux
is proportional to the departure of some surface temperature θs from the interior
temperature, where θs may be different from θm according to the relation

θs = λθm + (1 − λ)θi, (3.10)

for some λ. Dimensionally, the convective heat flux per unit area is h(us −ui) = hλ(um−
ui), and hence λ alters the effective heat transfer coefficient. It now follows that θm

satisfies (3.8). The surface thermal mass and bulk thermal mass temperatures are also
harmonic, θs(τ ) = θse

iτ and θm(τ ) = θmeiτ , and the complex amplitudes of the thermal
mass bulk and surface temperature variations are

θm =
θ i

(1 + iΩL)
(3.11)

and

θs =
[1 + iΩL(1 − λ)]

(1 + iΩL)
θ i. (3.12)

The surface temperature can be matched exactly between the full diffusive model (3.3)
and the generalized lumped model (3.12) to give expressions for the effective thickness
lr and effective heat transfer coefficient λ as before. The parameter ΩL is now seen
to be the ratio of the time scale ρcllr/λh for changes to the (thinner) lumped mass
temperature by (reduced) convection, compared to the forcing time scale 1/ω.

Alternatively, the generalized lumped model can be derived within the framework
of the CTF method. The one-dimensional flow of heat through a layer of thermal
mass exposed at either side to air with harmonic temperature variations is analogous
to the flow of electric current through a network of three complex impedances
connected between two ac voltage supplies, shown in figure 7(a); see, for example,
Fisk (1981). From the thermal mass surface temperature (3.3), it can be shown that
the internal thermal mass, together with the convection at the surface, is equivalent
to a dimensional impedance to ground in the CTF method of

Z =
1

h
+

l

κρc(1 + i)η tanh [(1 + i)η]
. (3.13)

This impedance may be expressed as

Z =
1

λh
+

l

iωρcllr
, (3.14)

where the effective thickness lr and effective heat transfer coefficient λ are as before.
The first term is the impedance of a pure resistor, representing the process of
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Figure 8. Generalized lumped model parameters as functions of η: (a) effective thickness
lr , and (b) effective heat transfer coefficient λ for ξ = 0.5 (dotted), 1.5 (dot-dashed) and 2.5
(dashed).

convection at the thermal mass surface, while the second term is the impedance of
a pure capacitor, representing the heat storage capacity of a lumped thermal mass.
Hence heat flow into an internal thermal mass is analogous to current flow in the
circuit shown in figure 7(b).

The effective thickness lr of the thermal mass is shown in figure 8(a). It is
independent of ξ , satisfies 0 < lr � 1, is close to one for η � 1 and falls off as 1/η

for η � 1. Therefore the dimensional effective thickness of the thermal mass, which
equals the full thickness l for η small, is reduced to the penetration depth δ =

√
2κ/ω

for η large. The effective heat transfer coefficient λ is shown in figure 8(b) for three
values of ξ , and decreases as ξ decreases. It also satisfies 0 < λ� 1, is close to one for
η � max (ξ 1/2, ξ ) and falls off as ξ/η for η � max (1, ξ ). Therefore the dimensional
heat transfer coefficient, which is the true coefficient h for η small compared to ξ , is
reduced to ωρcδ, the amount of heat stored per unit area in the thermal mass within
one penetration depth of the surface, for η large compared to ξ . In the latter limit,
convection is strong enough to carry heat away from the thermal mass at a greater
rate than diffusion can maintain the temperature of the surface layer.

The parameter ΩL can be written

ΩL =
ξ (cosh 2η − cos 2η) + η(sinh 2η − sin 2η)

η(sinh 2η + sin 2η)
. (3.15)

This takes the value Ωl ∼ ξ for η � min (1, ξ ) and falls off as ΩL ∼ 1 + ξ/η for η � 1.
Hence 1/ΩL is the more exact counterpart of the parameter combination max (1, η)/ξ ,
identified in the scaling analysis of § 2 as indicative of the role of the thermal mass.
For the three types of building construction considered in table 1, ΩL = 0.4, 2.3 and
6.9, for the lightest to heaviest construction types, respectively.

In terms of the attenuation and phase lag, if the interior temperature is given by
θi(τ ) = cos (τ − φi)/Ai , then the bulk temperature is θm(τ ) = cos (τ − φm)/Am, where

Ai

Am

=
1√

1 + Ω2
L

(3.16)

and

tan (φm − φi) = ΩL. (3.17)

Note that the thermal mass reaches an extremum of temperature when the
bulk thermal mass and interior air temperatures are equal, as θm(φm) = 1/Am =



18 J. M. Holford and A. W. Woods

1 2 3 4 50

0.2

0.4

0.6

0.8

1.0

ξ

P
ha

se
 φ

(1
) 

an
d 

in
ve

rs
e 

at
te

nu
at

io
n,

 1
/A

(1
)

Figure 9. Comparison of the variation with ξ of the phase lag (× and dashed line) and
inverse attenuation (+ and solid line) of the thermal mass surface temperature with respect
to the interior air temperature at η = 1.5 between the full diffusion solution (symbols) and the
generalized lumped model (lines).

cos (φm − φi)/Ai = θi(φm). The attenuation Amean of the mean thermal mass
temperature θmean is greater than the attenuation Am of the bulk thermal mass tempera-
ture, as Amean =Am/lr . The temperature of the exposed thermal mass surface is given
by the intermediate temperature θs(τ )= cos (τ − φs)/As , where

As

Am

=
1√

1 + Ω2
L(1 − λ)2

(3.18)

and

tan (φm − φs) = (1 − λ)ΩL. (3.19)

The predictions of this generalized lumped model are compared with those of the full
model, accounting for diffusive heat transfer within the thermal mass under forced
ventilation in figure 9, for one value of η. As ξ increases, the relative phase lag
φ(1) = φs − φi and attenuation A(1) = As/Ai of the surface temperature increase.

The parameters ΩL and λ are related by

(1 − λ)ΩL =
sinh 2η − sin 2η

sinh 2η + sin 2η
. (3.20)

Therefore, from (3.18)–(3.20), the relationship between the surface and bulk thermal
mass temperatures depends only on η. For η small, the whole depth of the thermal
mass is affected by variations, and so the bulk and surface thermal mass temperatures
are similar. For η large, only the surface of the thermal mass is affected by variations,
and so the bulk temperature variations are weaker and lag by π/4.

The variation of ΩL and λ with η and ξ is shown in figure 10. This can be compared
with the time series clips in figure 5, remembering that the latter are under natural
ventilation. Time clips (i) and (iii), in which the surface temperature follows that of
the mean thermal mass, have λ∼ 1, whereas time clips (iv) and (v), in which the
surface temperature follows that of the interior air, have λ� 1. The smallest phase
lag and attenuation between the mean thermal mass and interior air temperatures
occur in time clips (iii) and (v), for which ΩL < 1, and the effective thermal mass is in
good thermal contact with the interior air.
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Figure 10. Contours of constant (a) ΩL = 0.5, 1.0 . . . 5.0 and (b) λ= 0.1, 0.2 . . . 0.9.

4. Approximate model of a naturally ventilated space with internal
thermal mass

In the previous section we showed that if the interior air temperature variation
is harmonic, the evolution of the internal thermal mass surface temperature is
exactly replicated by that of a generalized lumped mass, with appropriate choice of
parameters. We now explore whether a similar model can be applied to thermal mass
influenced by a natural ventilation flow driving a nonlinear heat exchange between
the environment, in which there is a harmonic temperature variation, and the interior
air. As a starting point, we assume that the relationship between the thermal mass
surface temperature and the mean thermal mass temperature in (3.5), that was the
basis of the generalized lumped model, also holds under natural ventilation. This
involves a degree of approximation because the nonlinearity introduced by natural
ventilation causes the interior air (and thermal mass) temperatures to depart from a
harmonic variation. In this model, the bulk thermal mass temperature evolves as

ΩL

dθm

dτ
= θi − θm, (4.1)

(cf. 3.8), and the interior temperature is set by the requirement from (2.11) and (3.10)
that the heat fluxes in the interior balance, i.e.

0 = λ(θm − θi) + Fn(θe − θi)|θe − θi |1/2. (4.2)

A numerical integration of (4.1) and (4.2) is again calculated for an initial-value
problem, continuing until the long-time solution is reached. An adaptive step size
Runge–Kutta algorithm is used for the time-stepping, with a simple interval bisection
algorithm for determining θi; see Press et al. (1989). From (4.2), we see that the
parameter Fn/λ is the appropriate measure of the relative importance of convective
heat exchange at the surface of the thermal mass and the heat flux associated with
the natural ventilation.

Figure 11(a) shows the interior air and thermal mass temperatures over several
days, from numerical integration of the generalized lumped model, for parameters
that correspond to the full diffusion calculation shown in figure 3. Visually the
agreement with figure 3 is good (for comparison, the mean thermal mass temperature
lrθm is shown). A comparison of the phase lag and attenuation from the full model
(×) and the generalized lumped model (�) for these thermal mass parameters is given
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Figure 12. The variation in (a) phase lags and (b) attenuations from the full model (×) with
η = 1, ξ = 1, and the generalized lumped model (�) with ΩL = 1.52, λ= 0.606, lr = 0.921, both
calculated numerically. Approximate solutions to the generalized lumped model found using
the harmonic method (dashed lines) and the collocation method (solid lines) are shown.

in figure 12, across a range of ventilation rates. There is very good agreement over
a wide range of values of Fn. This suggests that the generalized lumped mass model
can be used as a good leading order model to describe the coupling of nonlinear
natural ventilation with heat transfer into an internal thermal mass.

Although numerical integration of (4.1) and (4.2) is reasonably straightforward,
considerable insight can be gained from approximate solutions of the coupled
nonlinear system. This system can be reduced to a single nonlinear ordinary differential
equation for θm,

±
(
λΩL

Fn

)2/3 (
±dθm

dτ

)2/3

= θe − θm − ΩL

dθm

dτ
, (4.3)

where the ± are taken together according to whether dθm/Dτ � 0. In the Appendix,
we describe solutions of this equation that describe the transient cooling of a space
with thermal mass towards a constant environment temperature, through natural
ventilation.
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An approximate solution to (4.3) can be found by the collocation method (method
of selected points); see Zwillinger (1992). This is a weighted residual method, in which
N unknown coefficients in a trial solution are determined from the requirement that
the average residual errors in the differential equation, with N different weightings
δ(τ − τcj ) for j = 1, . . . , N , vanish over a suitable domain (here one period). This
method has a long history, and when the basis functions for the approximation space
are Fourier components, it forms the basis of the pseudospectral method. The choice
of collocation points can affect the approximate solutions; see Collatz (1966). Here
τc1 =φm and τc2 = φi are chosen to approximate the peak values. For the trial solution

θm =
cos (τ − φm)

Am

, (4.4)

the phase and attenuation of the thermal mass temperature are related by

Am =
1

cos φm

, (4.5)

so that, as in § 2, the bulk thermal mass, interior air and environment temperatures
are equal at the thermal mass temperature extrema.The thermal mass phase lag varies
with Fn/λ and ΩL as(

tan φm

ΩL

− 1

)6

=

(
λ2

ΩLF 2
n

)2 (
1 +

1

Ω2
L

)
(1 + tan2 φm). (4.6)

A truncated series solution, calculated by the harmonic or spectral method, gives an
alternative approximate solution to the collocation method. Taking the first term in
the series, (4.4), as the trial solution, the orthogonality relationships reveal that the
phase lag is

tan φm

ΩL

= 1 + 1.07

(
λ2

ΩLF 2
n

)1/3

. (4.7)

While subsequent terms can be added to this series solution, increasing the accuracy,
we have found that the prediction of the attenuation and phase lag is more accurate
using the collocation method. Under either approximate method, from (4.1), the
relative attenuation and phase lag of the thermal mass and interior air temperatures
depend on ΩL in the same manner as if the interior temperature were prescribed, as
(3.16)–(3.17).

Figure 11(b) shows the interior air and thermal mass temperatures over several days,
reconstructed from the approximate solution (3.16)–(3.19), (4.5) and (4.6), which is
visually indistinguishable from the generalized lumped model solution in figure 11(a).
The prediction of the phase lag and attenuation from the approximate solutions from
the collocation method (solid lines) and from the harmonic method (dashed lines)
are also shown in figure 12. The approximate solution found using the harmonic
method gives a good estimate of φi and φs , but poor estimates of the other four
indicators, while the approximate solution found using the collocation method is a
good estimator of the numerical results for all but φi and φs .

A quantitative comparison of the full solution from (2.6), (2.7) and (2.11), the
generalized lumped model solution from (4.1) and (4.2) and the approximate solution
from (3.16), (3.17), (4.5) and (4.6) is now made. The square of the difference between
the interior air and thermal mass surface temperatures from each of the latter
two solutions, and temperatures θi exact and θs exact from the full model solution, is
calculated over a day as a percentage of the squared variation of the environment
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Figure 13. Percentage error in the temperature of the interior air Ei (dotted) and thermal
mass surface Es (dot-dashed), from both the generalized lumped model (thin curves) and the
approximate solutions (thick curves) as compared with the full diffusion model. The parameters
are (a) η = 1, ξ = 1, hence ΩL = 1.52 and λ= 0.606, and (b) η = 0.5, ξ =0.2, hence ΩL =0.364
and λ= 0.546.

temperature
∫ 2π

0
θ2
e dτ = π, i.e.

Ei =
100

π

∫ 2π

0

(θi − θi exact)
2 dτ and Es =

100

π

∫ 2π

0

(θs − θs exact)
2 dτ. (4.8)

The values of Ei and Es for both the generalized lumped model, and the collo-
cation method approximate solution, are shown in figure 13(a) for a range of ventila-
tion parameters Fn, at η = 1, ξ =1. For these parameters, the errors in solutions
from the generalized lumped model are very small, and the errors in solutions
from the collocation approximation, although somewhat greater, are less than 0.1%.
In the generalized lumped model, for these values of η and ξ , and for all others
for which ΩL > 1, Ei is greatest for an intermediate value of Fn = O(λ), along the
boundary between regimes I and III, while Es reaches a plateau for large Fn.
When Fn � λ, the temperature variations are small in both the full diffusion and
generalized lumped models, while when Fn � λ, the interior temperature follows
the (harmonic) environment temperature closely, and so the assumption on which
the generalized lumped model is based is very good. The errors for the harmonic
approximation (not shown) are many times greater than those for the collocation
approximation. While the collocation approximation minimizes the error, the
harmonic approximation minimizes the error at the fundamental frequency only,
leading to a worse approximation at this level.

When the values of η and ξ are such that ΩL � 1, such as for the case of η = 0.5,
ξ = 0.2 shown in figure 13(b), the errors Ei and Es are greatest for Fn =O(ξ ), along
the boundary between regimes I and II. From its definition, at Fn ≈ ξ , ventilation
brings in just enough heat during one forcing period to raise the temperature of
the whole thermal mass, which behaves almost as a lumped mass for these small
values of η. As the collocation points τc1 = φm and τc2 = φi are close together for
these parameters, and the approximate solution is a bad estimator of the generalized
lumped model behaviour.

With these points in mind, the variation in model errors across ηξ parameter
space is investigated, at the value of Fn that maximizes the error. The errors in
the generalized lumped model solution are less than 0.1%. These errors are greatest
for the thermal mass surface temperature at ξ = O(1), along the boundary between
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Figure 14. Maximum percentage error over Fn in the temperature of the interior air Ei

(dotted) and thermal mass surface Es (dot-dashed), from both the generalized lumped model
(thin curves) and the approximate solutions (thick curves) as compared with the full diffusion
model. The parameters are (a) η = 0.2 and (b) ξ = 0.2.

regimes II and III, as shown in figure 14(a), and increase by a factor of about 10 as η

rises above 1, and the effective mass thickness is reduced below the actual thickness,
as shown in figure 14(b). The errors in the theoretical approximation are less than 1%
over most of the parameter space. These errors rise as ξ → 0, as shown in figure 14(a),
when again the collocation points τc1 =φm and τc2 = φi approach each other. The
error is greater for small η, when a larger fraction of the thermal mass is affected by
the temperature fluctuations at the surface, as shown in figure 14(b). For larger ξ , the
error does not vary significantly with η.

With this confidence in the generalized lumped model and its approximate solution,
we now explore the effects of internal thermal mass on the temperature evolution
within the space. Three limiting forms of the solution to (4.6) can be derived.

Region I:
Fn

λ
� min (1, ΩL)

(
1 +

1

Ω2
L

)1/4

(ventilation-limited),†

tan φm ∼ Am ∼ λΩL

Fn

(
1 +

1

Ω2
L

)1/4

�1, Ai ∼ λ

Fn

(
1 +

1

Ω2
L

)−1/4

�1,

tan φi ∼ tan φm

1 + ΩL tan φm

.

Region II: ΩL � min

[
1,

(
Fn

λ

)2
]

(convection-dominated),

tan φm ∼ ΩL +

(
λ2ΩL

F 2
n

)1/3

�1, Am ∼ Ai ∼ 1 +
tan2 φm

2
∼ 1,

tan φi ∼
(
λ2ΩL

F 2
n

)2/3

�1.

† In this regime, the interior/environment temperature difference scales on �T , and the
non-dimensional time constant ωtc = 1/εRn = ΩL/Fn indicates the relative importance of heat
storage by the thermal mass to heat transfer by ventilation. Hence the parameter combination
ΩL/Fn appears in the limiting form of the solution.
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Figure 15. Contours of (a) attenuations Am (solid lines) and Ai (dashed lines) at values
1.0625, 1.125, . . . , 5.0 and (b) phase lags tan φm (solid lines) and tan φi (dashed lines) at values
0.3, 0.6, . . . , 9.6, for the approximate solution from (4.6) to the generalized lumped model.

Region III: ΩL � 1,
Fn

λ
� 1 (interior air and thermal mass diverge),

tan φm ∼ Am ∼ ΩL

[
1 +

(
λ

Fn

)2/3
]

�1, Ai ∼ 1 +

(
λ

Fn

)2/3

∼ 1,

tan φi ∼ 1

ΩL

(
λ

Fn

)2/3

�1.

There is a close correspondence between these regions and those in the scaling
derived in § 2, with the asymptotes for the attenuation above providing greater detail,
in addition to the new phase information. The parameter combination max (1, η)/ξ
representing the degree of thermal equilibration between the effective thermal mass
and the interior air is again equivalent to 1/ΩL. The generalized lumped model
shows that when convection can transfer heat to the thermal mass more quickly
than diffusion can spread it within the thermal mass, the heat transfer coefficient is
effectively reduced by the factor λ. Then the strength of the ventilation is characterized
by Fn/λ, that is, the ratio of ventilation heat flux to the heat flux from the thermal
mass at the reduced convection strength.

The variation of attenuation and phase lag with Fn/λ and ΩL for the approximate
solution is shown in figure 15. The attenuation of both the interior air and thermal
mass temperature variations, and the phase lag of the thermal mass variation, increase
with decreasing ventilation (Fn decreasing) and with decreasing heat exchange with
the thermal mass (ΩL increasing). The phase lag of the interior variations increases
as Fn decreases, and peaks at a value of ΩL = ΩLcrit < 3−1/2 for any Fn, given by

ΩLcrit =

√√
1 + 16γ − (1 + 6γ )

2(1 − 9γ )
where γ =

(
Fn

2λ

)4/3

. (4.9)

This critical parameter value lies within regime I and between regimes II and III. At
both extremes of ΩL, the interior phase lag falls to zero. For close thermal equilibration
between the effective thermal mass and the interior air (ΩL → 0), the interior air and
thermal mass temperatures both follow the environment, as there is no reservoir able
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Figure 16. The variation with Fn/λ of the rescaled phase lags and attenuations from the
approximate solution from (4.6) to the generalized lumped model, for ΩL = 0.1 (dotted line),
0.5 (dashed line) and 1.0, 1.5, . . . , 5.0 (solid lines).

to maintain a different temperature. For little thermal equilibration (ΩL → ∞), the
interior temperature follows the environment, the interior having negligible thermal
mass.

It is useful to know the ranges of the phase lags and attenuations. The interior phase
lag is largest in the ventilation-limited regime, and from the scaling above therefore
always satisfies 0 � tan φi � 1/ΩL. The bulk thermal mass temperature always lags the
interior temperature by ΩL, and so ΩL � tan φm < ∞. As the ventilation parameter
becomes large, the interior temperature follows the environment temperature, and
so 1 � Ai < ∞. The bulk thermal mass temperature is always attenuated below the

interior air temperature by
√

1 + Ω2
L, and so

√
1 + Ω2

L � Am < ∞.
A somewhat simplified scaling covers the range ΩL � 1, including the limits of

regions I and III. Here, from (4.6), tan φm ∼ ΩLf (Fn/λ), where the function f (x)
satisfies

[f (x) − 1]3 ∼ f (x)

x2
. (4.10)

Since f (x) > 1, we then have the limiting forms Am ∼ ΩLf (Fn/λ), Ai ∼ f (Fn/λ) and
tan φi ∼ [1 − 1/f (Fn/λ)]/ΩL. This collapse with Fn/λ at large ΩL of the phase lags
and attenuations, scaled by the limiting values, is shown in figure 16.

The success of the approximate solution to the generalized lumped model in
capturing the behaviour of the full numerical model is confirmed in figure 17. The
phase lag and attenuation of the interior air and mean thermal mass temperature for
a number of choices of parameters (η, ξ , Fn) corresponding to three values of ΩL
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Figure 17. The phase lag and attenuation from numerical results of the full diffusion model
(points) and from the approximate solution from (4.6) to the generalized lumped model
(lines), with parameters chosen such that ΩL = 0.1 (� and dotted line, using 0.02 < η < 0.35,
0.02 <ξ < 0.1), ΩL = 0.5 (+ and dashed line, using 0.05 < η < 0.8, 0.1 < ξ < 0.5) and ΩL = 5.0
(× and solid line, using 0.1 < η < 5.0, 5.0 < ξ < 20.0). All results were calculated with
0 <Fn/λ< 5.

are seen to collapse reasonably onto the approximate solution curves replotted from
figure 16, dependent on (ΩL, Fn/λ). Note once again that Amean = Am/lr .

5. Conclusions
The air temperature inside a building depends on many factors, including the

environment temperature, building geometry and heating. In buildings with significant
thermal mass, the building fabric acts as a heat store, and the flux of heat between
the fabric and air depends on the time history of temperature of the system. With
modern construction techniques, the thermal mass in a building is typically insulated
from the environment. While numerical integration of thermal diffusion within the
thermal mass can give an exact solution, more insight and greater applicability in the
design process can be gained from lumped models, in which the thermal mass has a
uniform temperature.

An internal thermal mass under time-periodic forcing can be characterized by
two parameters: the ratio ξ of the time for convection to affect the thermal mass
temperature to the forcing time scale, and the ratio η of the layer depth to the
penetration depth, through thermal conduction, of the varying signal. The evolution
of the mean temperature of an internal thermal mass in contact with interior air at
a harmonically varying temperature is reproduced exactly by a generalized lumped
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mass model. In this model, heat is transferred from a lumped mass thinner by a factor
lr than the true thermal mass thickness, with convection at the surface weaker by a
factor of λ than the true convection. It is equivalent to a resistor and capacitor in series
to ground in the CTF method. The fraction lr of the thermal mass which is in good
thermal contact with the air increases with the penetration depth 1/η until the whole
thickness of the thermal mass takes on a uniform temperature. When convection
proceeds more rapidly than diffusion, heat builds up at the surface and convection
is reduced by a factor λ, which decreases as ξ decreases and as η increases. The
degree of thermal equilibration between the effective thermal mass and the interior
air is then given by 1/ΩL, where ΩL = ξ lr/λ. The reduced convection is equivalent to
introducing a surface temperature, between the bulk thermal mass and interior air
temperature, which has an important influence on comfort conditions in the space.

The conditions inside a simple well-mixed single-space ventilated building have
been investigated for a harmonically varying environment temperature. The internal
thermal mass of the building is approximated with the generalized lumped model
described above (although under natural stack ventilation, the ventilation heat flux
varies nonlinearly with temperature difference and temperature variations are only
approximately harmonic). The strength of the ventilation is quantified by the ratio
Fn/λ of a typical ventilation heat flux to the heat exchange with the thermal mass
under reduced convection. The bulk thermal mass temperature θm reaches its extrema
when interior and thermal mass temperatures are all equal to the environment
temperature, and so Am cos φm ≈ 1. The relative attenuation and phase lag of the
thermal mass temperature from the interior temperature are the same as if the
interior temperature was prescribed, so (Am/Ai)

2 ≈ 1 + Ω2
L and tan(φm − φi) ≈ ΩL.

When Fn/λ is small and ventilation is restricted, the interior air and bulk thermal
mass temperatures vary by only a small amount, with the thermal mass phase lag
almost π/2. When ΩL is large and thermal equilibration between the thermal mass
and interior air is poor, variations in the interior temperature are almost in phase with
the environment and increase with Fn/λ, moving from the ventilation-limited regime
to one in which the interior air temperature variations, although large, do not transfer
significant heat to the thermal mass. Alternatively, when ΩL is small, the variation
in bulk thermal mass and interior air temperatures are similar and decrease in phase
and attenuation as Fn/λ increases, moving from the ventilation-limited regime to one
in which convection dominates.

Results from the generalized lumped model are very close to those from numerical
integration of thermal diffusion within the thermal mass. An approximate solution to
the generalized lumped mass model, found by the collocation method, also compares
well with the numerical model, providing that ξ is not very small. This will not restrict
the practical use of the model, since even lightweight building constructions are likely
to fall outside this range. Therefore, estimates of the phase lag and attenuation of
the interior, bulk and surface thermal mass temperatures can be gained from the
approximate solution by three steps:

(i) estimate η, ξ and Fn for the space,
(ii) calculate the parameters ΩL and λ for the generalized lump model,
(iii) solve (4.6) for φm, and calculate Am, φi , Ai , φs and As from (4.5) and (3.16)–

(3.19).
The neglect of internal thermal gains is the main simplification in this work, which

will be addressed in a follow-up study. These investigations give an indication of the
regimes that occur in naturally ventilated spaces with internal thermal mass. It would
be of interest to determine the temperature variations within the space under the
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more complex conditions of time-varying internal heat gains and ventilation opening
areas.

In closing we note that the results of the present analysis of an insulated internal
thermal mass are different from the case in which the thermal mass is in thermal
contact with both the environment and interior air: in that case, the nonlinearity in
the ventilation flow causes a sharp transition in regimes from a ventilation-controlled
heat exchange to one controlled by the diffusive heat flux through the thermal mass,
as the amount of thermal mass increases (Holford 2004). It would be interesting
to combine the two models in a future analysis, to explore the interaction of both
internal thermal mass, and thermal mass in good contact with the exterior as well as
the interior. However, current building regulations require a sufficiently high degree
of insulation for the building envelope that the penetration depths of interior and
environmental temperature variations do not extend into more than a small fraction
of the insulation. In this limit, it is anticipated that an external thermal mass supplies
the same fluctuating heat flux as an internal mass with suitably chosen effective
thickness, combined with a small steady heat flux through the imperfect insulation.

This work has been funded by the Cambridge MIT Institute, as part of research
into low energy buildings.

Appendix. Transient ventilation of an internal thermal mass
A lumped model can also be used to represent the response of an internal thermal

mass to a sudden change in environment temperature, in the limit η � 1, where here
η = l/

√
2κt , and t is the time elapsed since the sudden change, for which the signal of

the change has diffused throughout the thermal mass. The adjustment of the thermal
mass temperature with scaled time τ = τ/ΩL = hλt/ρcllr to the environment θe = 0 is
then governed by

∓
(

λ

Fn

)2/3 (
±dθm

dτ

)2/3

= θm +
dθm

dτ
. (A 1)

Without loss of generality, taking the case θm(0) = 1, and ignoring the invalidity of
(A 1) for very small times, this becomes

0 = θm −
(

λ

Fn

)2/3 (
−dθm

dτ

)2/3

+
dθm

dτ
. (A 2)

In the limit Fn/λ� 1, the ventilation is sufficient to provide no control on the heat
transfer and the thermal mass temperature decays exponentially on the time scale
lr t2/λ for convection to affect the bulk thermal mass temperature,

θm(τ ) = e−τ = exp

(
− λ

lr t2
t

)
. (A 3)

In the limit Fn/λ� 1, convection is sufficient to provide no control on the heat
transfer and the thermal mass temperature decays with a power law dependence on
the time scale 2t4lr/ε for ventilation to affect the bulk thermal mass temperature,

θm(τ ) =

(
1 +

Fnτ

2λ

)−2

=

(
1 +

ε

2t4lr
t

)−2

. (A 4)
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